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 A B S T R A C T  

 The effort for combating the COVID-19 pandemic around the world has resulted in a huge 
amount of data, e.g., from testing, contact tracing, modelling, treatment, vaccine trials, and 
more. In addition to numerous challenges in epidemiology, healthcare, biosciences, and social 
sciences, there has been an urgent need to develop and provide visualisation and visual analytics 
(VIS) capacities to support emergency responses under difficult operational conditions. In this 
paper, we report the experience of a group of VIS volunteers who have been working in a large 
research and development consortium and providing VIS support to various observational, 
analytical, model-developmental, and disseminative tasks. In particular, we describe our 
approaches to the challenges that we have encountered in requirements analysis, data 
acquisition, visual design, software design, system development, team organisation, and 
resource planning. By reflecting on our experience, we propose a set of recommendations as 
the first step towards a methodology for developing and providing rapid VIS capacities to 
support emergency responses. 

 

1. Introduction 

Visualisation and visual analytics (abbreviated as VIS) has been 
used extensively in many mission-critical applications and 
healthcare applications. Since the emergence of COVID-19, data 
visualisation has been widely visible in traditional and online media 
for disseminating information related to COVID-19. Meanwhile 
what has not been obvious to the public is the fact that VIS 
techniques can and should be used to help healthcare scientists and 
experts in combating COVID-19. In particular, since 
epidemiologists and modelling scientists encounter a huge amount 
of collected data and simulation data on a daily basis [84], it is not 
difficult to infer that we need to provide epidemiological modelling 
workflows with as much VIS support as possible. However, there 

have been some challenges for many epidemiologists and modelling 
scientists to receive adequate VIS support. These challenges 
include: 

a. Epidemiologists and epidemiological modelling scientists are not 
accustomed to receiving VIS support systematically. In some 
disciplines, modelling scientists have received VIS support 
systematically. For example, in visualisation journals and 
conferences, there are hundreds of research papers on VIS 
support for computational fluid dynamics, including many 
surveys (e.g., [64]). For the past a few years, the topic of 
providing machine learning workflows with VIS support has 
been growing rapidly [82]. In contrast, VIS papers on 
supporting epidemiological modelling are very rare. This 
suggests that scientists in epidemiology may not be used to 
the notions that they could visualise their data at their 
fingertips, could have visualisation experts to design visual 
representations specifically for their models, and could 
monitor and analyse the behaviours of their models and 
parameters dynamically. 

b. Visualisation is widely mistaken only for information or knowledge 
dissemination. In many modelling applications, VIS 
techniques are commonly used for scientific and public 
dissemination, but seriously underused in all other stages of 
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a modelling workflow, which typically consists of a set of 
iterative processes, such as (a) data collection and 
observation; (b) hypothesis formulation and causality 
analysis; (c) model development, testing, validation, and 
comparison; and (d) model deployment, monitoring, and 
improvement. Ideally, modelling scientists and 
epidemiologists could have a quick glance of dynamic data 
anytime when there is a need (cf. stock brokers observing 
stock market data), access effective overviews of 
spatiotemporal patterns of the disease development and 
control (cf., meteorologists observing satellite images, 
contour maps, etc.), be provided with external 
memorisation of data to stimulate hypotheses and 
contemplate various decisions (cf. a general pacing around 
in a war room in front of many maps), and receive advice 
from an ensemble of analytical algorithms and visualisations 
about similarity, anomalies, clusters, correlation, causality, 
and association hidden in the data (cf. a CEO consulting 
specialists). 

c. There are not enough visualisation researchers around to support 
epidemiologists and modelling scientists. Mathematically, 
deriving an optimal model to forecast the contagion 
patterns of COVID-19 in different conditions (e.g., 
geographical, social, seasonal variation; different human 
intervention; etc.) is an intractable problem. It is an 
absolutely vital strategy to involve many modelling 
scientists and epidemiologists to develop different models 
because probabilistically, many developed models can 
produce sensible forecasts under some conditions. The 
more modelling scientists and epidemiologists can observe 
real-world data, examine model behaviours in different 
conditions, and compare the quality of different models, the 
more likely they can gain a better understanding and 
improve model performance in varying conditions. In 
2020, there were some 100 university teams in the UK 
working on different epidemiological models. In 
comparison, there are only around a dozen of VIS teams in 
the UK. It is not feasible to pair a VIS team and a modelling 
team individually. 

d. There is a lack of a VIS infrastructure that can quickly be adapted 
to support epidemiologists and modelling scientists. The most 
cost-effective way to deliver VIS support to many 
modelling scientists and epidemiologists would be to have a 
technical infrastructure, which would host many applicable 
VIS techniques, and enable modelling scientists and 
epidemiologists to visualise any relevant data and analytical 
recommendations at their fingertips. Such an infrastructure 
could potentially support many other operations for 
combating COVID-19. Of course, it is understandable that 
we did not have such a VIS infrastructure ready in 
anticipating the COVID-19 pandemic. Ideally one could 
clone and re-purpose an existing VIS infrastructure, and 
adapt existing VIS tools for analysing and visualising 
epidemiological data. However, partly because of (b), there 
has not been adequate investment in the past for developing 
such a VIS infrastructure for any application. Consequently, 
during the emergency, there was not an existing 
infrastructure to clone, repurpose, or adapt. 

Nevertheless, “complaining does not work as a strategy” [75], 
and “every challenge [we] face today makes [us] stronger tomorrow” 
[5]. RAMP VIS [78] is a group of 22 VIS volunteers, who answered 
a call in May 2020 to support the modelling scientists and 
epidemiologists in the Scottish COVID-19 Response Consortium 
(SCRC) [94], which was part of the rapid responses organised by 

the Royal Society (UK) [93]. A few more volunteers joined the 
RAMP VIS group in the summer and autumn of 2020. As a 
volunteering operation in an emergency context, the VIS 
volunteers encountered many challenges. For example, the time 
urgency demanded rapid development of usable VIS tools, the 
travel restriction and the domain experts’ heavy workload 
hampered in-depth requirements analysis, and parallel 
developments of pandemic models and data infrastructure entailed 
delays in accessing data to be visualised. In addition, there was a 
shortage of skilled developers for designing and engineering a VIS 
system, and a fair amount of uncertainty in organising and 
scheduling volunteering resources. 

The VIS volunteers made time urgency as their top priority, and 
were grouped into seven teams according to the available VIS 
expertise as well as different VIS needs in the SCRC modelling 
workflow. The grouping also enabled each team to progress 
independently in terms of requirements analysis, visual design, and 
system engineering. A few volunteers took part in different teams, 
facilitating knowledge sharing and collaboration among the teams. 
To our best knowledge, the experience of RAMPVIS volunteers is 
unprecedented in the VIS literature and epidemiology literature. In 
this paper, we describe our effort during 2020 to address the 
challenges in providing VIS support to epidemiologists and 
modelling scientists. By reporting and reflecting on our experience, 
we highlight the need for developing and providing VIS capacities 
to support a data-intensive emergency response. 

2. Related Work 

In this section, we review the application of VIS to emergency 
response and healthcare and discuss the existing methodologies that 
may be used to develop VIS in such applications. 

VIS for Emergency Responses. Emergency response has been a regular 
theme in VIS since 2005 [25]. Kwan and Lee [54] incorporate 
geospatial visualisation into a real-time 3D emergency response 
system to support quick response to terrorist attacks. Chittaro et 
al. [16] introduce VU-Flow, a 3D visual environment that provides 
navigation guidance to users during emergency simulations. Based 
on the data collected from large community disaster events (e.g., 
9/11 and Hurricane Katrina), Campbell et al. [12] use visualisation-
based interactive simulation for training emergency response 
teams. Natarajan and Ganz [72] introduce distributed visual 
analytics for managing emergency response between geographically 
dispersed users. Waser et al. [101] incorporate visual designs into 
simulation-based investigation of flood disasters to recommend 
appropriate response strategies. Maciejewski et al. [61] introduce 
PanViz, a VIS toolkit providing decision support for simulated 
pandemic scenarios. Ribicic et al. [79] develop a VIS interface to 
provide flood simulations to non-expert users. Konev et al. [52] 
incorporate interactive visual designs into a simulation-based 
approach for flood protection planning. Gelernter et al. [33] 
provide visualisations to guide first responders at a crisis scene. 
Visualising social media data is commonly used to support 
emergency responses for situational awareness [60], resource 
allocation [48], critical infrastructure management [97] and post-
disaster analytics [45, 66, 73]. Whitlock et al. [103] integrate VIS 
tools with mobile and immersive technologies to support critical 
operations during emergency response. 

VIS plays a critical role in mission-critical applications such as 
space missions. Abramyan et al. [2] develop an immersive 
visualisation environment for controlling space robots remotely on 
the Earth. Edell and Wortman [26] introduce advanced 
visualisations to assist the diagnosis of operational problems and 
failures for Van Allen Probes, a NASA space mission. 
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Furthermore, the IEEE Conference on Visual Analytics Science 
and Technology (VAST) host an international challenge workshop 
annually since 2006. Competition entries demonstrated novel VIS 
solutions for epidemic spread [40, 38], illicit activities [39, 22, 23], 
security streaming data [19, 20, 21] and natural disasters [18]. 

Unlike most of the prior work generally carried out in 
preparation for a future emergency, this work was conducted 
during the period of an emergency response to the COVID-19 
pandemic. 

VIS for Healthcare. The healthcare industry benefits from the 
adoption of Visualisation and Visual Analytics. Rind et al. [80] 
review VIS tools developed for the exploration of electronic health 
records. Carroll et al. [13] review 88 articles on VIS tools for 
infectious disease. Gotz and Borland [36] discuss challenges unique 
to the healthcare industry and the critical role that VIS plays in the 
domain. McNabb and Laramee [65] conduct an extensive survey of 
surveys including the adoption of VIS in the healthcare sector. 
Preim and Lawonn [77] survey the use of VIS for supporting 
decision making in the public health sector. 

The VIS techniques used in healthcare often incorporate 
analytical techniques. For example, Event Sequence Simplification 
is used to reduce visual complexity of sequential clinical events 
[105, 70, 37, 42], and support a more efficient decision support 
process [4]. Natural Language Processing is used to extract textual 
data from raw clinical datasets [109, 34, 89]. Machine Learning help 
automating the processing of clinical data and providing guidance to 
clinicians and researchers, including Active Learning [6], Support 
Vector Machine [99], Topic Modelling [35] and Recurrent Neural 
Networks [55]. 

The main difference between this work and the prior work is 
that we had to develop multiple VIS capacities rapidly to address 
different VIS needs concurrently. 

Methodologies for VIS Applications. Design study methodology [83] 
builds on the nested model of design and validation [71] to provide 
guidelines, pitfalls, and a process that help visualisation researchers 
design systems in applied contexts. This methodology uses the 
metaphor of “the Trenches”, which is where we found ourselves, 
and so, just as others have adapted its concepts and processes across 
varied settings [56, 91], this paper reports our approach that adopts, 
adapts and sometimes contradicts established guidance in the 
context of rapid emergency response. 

Workshops [49, 51] can speed up requirements gathering. The 
five-design sheets methodology [81] can structure the sketching 
process. Collaborative design methodologies [59] can address issues 
due to travel restrictions, and assist rapid visualisation design 

processes [24]. Some prior work in VIS advocates different software 
engineering methodologies [11, 46]. The agile approach (Kanban 
boards, SCRUM, etc.) is particularly suitable for developing VIS 
systems in applications with changing characteristics of data, users, 
and tasks. A recently-proposed method based on the cost-benefit 
analysis can potentially be used to discover shortcomings in a 
VISworkflowand explore potential solution systematically [14]. We 
have drawn inspiration from these methodologies in our work. 

3. Formulating the RAMPVIS Approach 

The Scottish COVID-19 Response Consortium (SCRC) [94] 
was established in April 2020 by researchers in three Scottish 
organisations in response to a call from the Royal Society for Rapid 
Assistance in Modelling the Pandemic (RAMP) [93]. The goal of the 
Consortium was to develop a more robust and clearer 
understanding of potential medium and long-term strategies for 
controlling the COVID-19 epidemic in Scotland and in the UK. The 
Consortium currently has over 150 members from 36 
organisations. 

On 14 May, Dr. Richard Reeve, the SCRC modelling 
coordinator, first met a VIS scientist. They discussed the SCRC’s 
overall requirements for visualisation. As shown in the first sketch 
in Figure 1(a), SCRC initially only required assistance for visualising 
the results of modelling, reflecting the widespread perception of 
visualisation as a tool only for information or knowledge 
dissemination. The VIS scientist described how different VIS 
techniques could enable domain experts to observe data quickly, 
analyse data with the aid of data mining algorithms, and improve 
their models through, e.g., visualisation of ensemble data, 
parameter space, and results from sensitivity or uncertainty 
analysis. Dr. Reeve embraced the idea of integrating VIS techniques 
throughout the modelling workflow, and revised the original sketch 
soon after (Figure 1(b)). The VIS scientist (referred to as VIS 
coordinator hereinafter) indicated the need to enlist the help from 
many VIS experts. 

The following day (15 May), the VIS coordinator sent an email 
call for VIS volunteers to many VIS scientists, researchers, and 
developers in the UK, some of whom forwarded the call to others. 
By June 1, 22 VIS volunteers (including the VIS coordinator) 
answered the call. There are 19 faculty members, two industrial 
researchers, and one academic research officer. Among them, 14 
indicated being able to prototype VIS software, and seven indicated 
willingness to engineer VIS systems. By June 2, the coordinator 
held meetings with all 21 volunteers individually or in small groups. 
The VIS volunteers had been using a diverse range of programming 
platforms. The most common denominator is D3.js [9]. Five VIS 

 
Figure 1: Two sketches illustrate the major change of the role of VIS in the SCRC modelling workflow during the initial discussion. The symbols “V” in pink 
circles indicate the needs for VIS. The discussion helped establish the need for visualisation capacities not only for dissemination of modelling results but 
also, perhaps more importantly, for many processes during model development and improvement. 
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volunteers had experience of coding in D3.js (one became 
unavailable a few weeks later). 

At that time, several teams in the SCRC were working on six 
different epidemiological models and one team on inference and 
model validation, while substantial effort was devoted to the 
development of a data infrastructure for storing modelling results 
as well as captured data related to COVID-19 spread in Scotland. 
For the VIS volunteers, there were many unknowns, such as what 
data might be available, how it may be retrieved, what were the 
requirements of individual domain experts and individual models, 
and so on. 

While the agile methodology in software engineering [57] and 
the nested model [71] in visualisation advocate the necessity of 
iterative requirements analysis and software evaluation, they do not 
prescribe a full requirements analysis and software evaluation 
within a single iteration. Otherwise, they would be similar to the 
waterfall methodology. In the VIS literature, many application 
papers indicate that it usually takes many months to acquire a 
meaningful set of requirements (e.g., six months in [1, 30] and 12 
or more months in [58, 27]). To support an emergency response, a 
lengthy delay due to requirements analysis would not be acceptable. 
Hence we had to complement user-centred requirements analysis 
with the existing knowledge documented in the VIS literature, and 
commenced the development as soon as we had understood a partial 
set of requirements. 

As reviewed in Section 2, many papers in the literature 
reported VIS techniques and tools for supporting healthcare 
applications, model development, and mission-critical operations. 
If one can identify the data types, user tasks, and user knowledge in 

an application, one can relate them to the requirements in 
previously reported applications that featured similar characteristics 
of data, tasks, and users. During the two weeks when we were 
recruiting VIS volunteers, we gained our understanding of: 

 Datatypes — Based on several briefs from the SCRC 
modelling teams, we quickly learned that there would be a 
huge amount of time series data, and some geographical 
data (e.g., maps), network data (e.g., contact tracing), and 
multivariate data (e.g., demographic data). Building on our 
knowledge of VIS literature, we anticipated that some other 
types of data that might result from analytical algorithms, 
such as similarity matrices. 

 User tasks — Building on our knowledge of other VIS 
applications, we quickly established that there would be a 
need for viewing time series in different ways for 
observation and comparison, in order to evaluate a model 
run against captured data, other runs, and other models. 
We anticipated that some analytical tasks would benefit 
from data mining algorithms, and at a later stage, domain 
experts would become interested in ensemble data 
visualisation and parameter optimisation. 

 User knowledge — Building on our experience working with 
other domain experts, we anticipated that (i) domain 
experts were highly knowledgeable about their own 
models, but could not avoid frequent observation of 
captured data and model results; and (ii) they were familiar 
with the major geographical locations in Scotland, but 
would need to incorporate map-based visualisation for 
smaller regions in Scotland and other UK regions. 

Meanwhile, we also consulted the abstracted theories and 
methodologies in the VIS literature. We observed that there was a 
need for all four levels of visualisation [15]. Figure 2 is an abstract 
representation of the workflow in Figure 1. Although disseminative 
visualisation was the initial requirement, from Figure 2, we can 
easily anticipate the needs for performing other types of 
visualisation tasks: 

 Observational Visualisation. During an epidemiological 
emergency, many epidemiologists and modelling scientists 
need to observe a huge amount of data routinely, such as 
viewing daily updates in different regions, simulation 
results of different models or different versions of a model, 
and previously captured or simulated data (to aid memory 
recollection). For example, one of the commonly 
encountered data types is time series. Given a time series 

with 𝑚 data values, observing these values in a time series 

plot is much quicker than reading 𝑚 values. Hence, for 𝐾 

domain experts to observe 𝑁 time series routinely, 
enabling them to perform observational tasks at their 
fingertips can collectively save a huge amount of time at the 

scale of 𝐾𝑁. 

Our initial requirement analysis did not identify the 
existence of any efficient and systematic support for such 
observational tasks. It would mean that domain experts 
either had to spend a lot of valuable time and cognitive 
resource to fiddle with spreadsheets or other tools to create 
visualisation plots or had difficulties to see enough data or 
view data frequently enough. 

 Analytical Visualisation. Many visualisation tasks are about 
identifying or determining the relations among the data 
objects being depicted without explicit visual confirmation 
of such relations. As the number of possible relations or 

 
Figure 2: Visualisation tasks can be categorised into four levels 
according to the complexity of their search spaces. The workflows for 
epidemiological modelling, especially during an emergency, can 
benefit significantly from observational, analytical, and model-
developmental visualisation in addition to disseminative visualisation. 
While visualisation can significantly reduce the time required for 
information acquisition, it can also enable experts to reason with the 
data in conjunction with their knowledge about, for instance, related 
facts and events in the reality, shortcomings in data collection and 
processing, and scientific understanding about the models concerned.  
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grouping patterns is a combinatorial function of the number 
of data objects, such analytical tasks are usually more 
complex and time consuming when there are many data 

objects in visualisation imagery. For example, given 𝑁 time 

series (each with 𝑚 data points) representing situations in 

𝑁 regions, visually determining the similarity among these 
time series or grouping them according to their similarity is 
more complex than observing each time series 
independently. In terms of the space complexity in 
computer science, the search space has a polynomial growth 

in relation to 𝑚𝑁. Hence, when 𝑚𝑁 is a big value, it is 
highly desirable to use algorithms to reduce the search space 
by for instance, ranking the similarity or recommending 
clusters. Such algorithmic suggestions can be conveyed to 
the domain experts through various types of visual 
illustration, such as connecting, ordering, highlighting, etc. 

Meanwhile, it is necessary for the domain experts to be 
aware that different algorithms may yield different 
algorithmic suggestions and algorithms may not have 
considered all variables necessary for correct suggestions. 
In an emergency scenario, it is typically uncertain about the 
best algorithm or missing variables. Hence, VIS tools should 
try to offer different algorithms and empower domain 
experts to judge the quality of algorithmic suggestions. In 
general, a reasonable algorithm is expected to reduce the 
search space significantly even if it may not result in an 
absolutely correct suggestion. 

 Model-Developmental Visualisation. Developing 
epidemiological models is a mission-critical operation in 
combating COVID-19 [62]. There is a diverse range of 
models in terms of their epidemiological conceptualisation, 
mathematical specification and computational structure. 
Each model typically has many parameters, and different 
parameter combinations effectuate different model 
behaviours. Hence, the search space for an optimal model 

is usually intractable. For example, given 𝑛 parameters, 

each with 𝑘 possible values, there are 𝑘𝑛 combinations of 
parameter values. Some models have over 100 parameters, 
and many parameters are real numbers. Hence, it is unlikely 

that one can explore all 𝑘𝑛 combinations. 

It is crucial to empower model developers to use their 
knowledge to explore the search space intelligently, 
effectively, and efficiently. In some disciplines, such as 
computational fluid dynamics and machine learning, VIS 
researchers commonly design and develop model-specific 
VIS tools to enable model-developers to explore their 
search space effectively and efficiently (e.g., [64, 82]). Such 
effort requires close collaboration between VIS researchers 
and model-developers as it takes time for VIS researchers 
to gain adequate understanding about a model and a model-
developmental workflow, and for model-developers to 
appreciate how VIS techniques may help without the 
intelligence and knowledge similar to model developers. 

We therefore concluded that although disseminative visualisation was 
the initial requirement, the above considerations about data, tasks 
and users confirmed that the priority should be given to 
observational, analytical, and model-developmental visualisation [15]. 
We also anticipated that the increasing complexity from 
observational to analytical and to model-developmental 
visualisation compels increasing depth of collaboration, time 
needed for requirement analysis, creativity in visual designs, and 
effort for iterative design evaluation and optimisation. Meanwhile, 

we could not and should not delay the infrastructural development, 
which demanded rather-scarce skills and experience of designing 
and engineering deployable VIS systems. 

The VIS volunteers were thus organised into several teams, 
including a generic supporting team (focusing on observational 
visualisation), an analytical support team, four modelling support teams, 
and a disseminative visualisation team. We placed all D3.js developers 
into the generic support team, and distributed other VIS volunteers 
according to their expertise and time capacity. In the following four 
sections, we report the activities of these teams, including further 
requirement analysis conducted by each team. 

4. Generic Support and RAMP VIS 
Infrastructure 

Infrastructure Setup. The generic support team consists of mainly VIS 
volunteers who can program in D3.js and have developed and 
deployed VIS systems. Our requirement analysis indicated that 
domain experts were not able to observe data regularly. Using the 
recently-proposed method for optimising VIS workflows [14], we 
quickly identified that this was caused by the cost of reading and 
visualising data using spreadsheets, and a solution is to develop a 
VIS infrastructure closely coupled with the SCRC data 
infrastructure that was being developed. The goal of the team was 
to enable observational visualisation for every piece of data held by 
the data infrastructure. 

The development of the SCRC data infrastructure started 
several weeks before VIS volunteers joined SCRC. A group of 
professional research software engineers (also volunteers) have 
carried out the design and implementation since. The goal is to 
capture the provenance of models and their results, enabling all 
contributing elements traceable from results to models and the 
conclusions drawn. Transparency is thus a key principle. All models 
and core software components are open-source [95]. Hence the VIS 
infrastructure has also been developed in the open. 

The UK Science and Technology Facilities Council (STFC) provides 
the data and VIS infrastructure featuring virtual machines on the 
STFC cloud service, including a chat platform for collaboration and 
a data registry for web applications. The readiness of STFC for 
emergency responses enabled the hardware for the VIS 
infrastructure to be available within 24 hours after our request. 

As emergency responses, the SCRC data infrastructure, VIS 
infrastructure, and six epidemiological models were developed in 
parallel. While the generic support team was waiting for the measured 
data, we had access to some Scotland data in three spreadsheets, 
which contained over 300 time series and a few data tables. We 
anticipated that there would be at least thousands of time series 
when data from other regions and model runs became available. 
Such scale would be a challenge to the domain experts as well as the 
VIS developers. Users would need to assess the relevant plots 
quickly, while developers would need to adapt each visualisation 
program (referred to as a VIS function) to other applicable data with 
minimal development effort. 

User Interface. To address the need of the domain expert users, the 
RAMP VIS server provides the following facilities (Figure 3): 

 A user interface (UI) with a side bar for accessing 
visualisations organised in categories; 

 A multi-keyword search facility; 

 A personal portal for storing frequently-used visualisations; 

 Because each visualisation is given a unique URL, users can 
also tag frequently-used visualisations on a web browser; 
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 A collection of dashboards, each providing links to other 
dashboards and visualisation plots. 

On the RAMP VIS server [74], there are broadly two types of 
visualisations, dashboards and plots. Each dashboard is designed to 
show key indicators and/or summary plots that some domain 
experts need to view frequently. For example, it may show the 
daily data of a region or a summary of a model run (Figure 3(b)). 
Some information may serve as overviews while others serve as 
detailed views. The data objects, visual widgets, or summary plots 
on a dashboard are all clickable, providing a gateway to fuller or 
more detailed visualisations or other dashboards when required. In 
addition to a set of pre-defined dashboards, the generic support team 
provides a service to SCRC domain experts for constructing new 
dashboard whenever needed. 

The team have developed a variety of visualisation plots. As 
shown in Figure 3(c), some plots feature interactive capabilities, 
some compare multiple data streams, some convey the analytical 
results produced by data mining algorithms, and some display 
modelling results with estimated uncertainty. 

Architecture and Ontology. To address the aforementioned second 
need for propagating each VIS function (either a dashboard or a 
plot) to other applicable data, the team has designed and developed 
an ontology- and agent-based architecture for the RAMP VIS server 
[50]. When a VIS developer fetches a task of writing a VIS function 
in D3.js, an infrastructure manager creates a program template with 
one or more example data streams. The binding of the VIS function 
and the given data streams results in a unique web page. Once the 
development completes, the VIS function can be reused by 
replacing the sample data stream with other applicable data streams. 
Through a simple UI, the infrastructure manager queries a Search 
Service to find all suitable candidate data streams, finalises a 
collection of data streams for propagation, and calls a 
Propagation Agent to create new bindings (and web pages) for 
these data streams automatically. 

As illustrated in Figure 4, in the VIS infrastructure, an ontology 
provides the vital support to the search facilities that enable users to 
find desired dashboards and plots and the infrastructure manager to 
find applicable data streams for propagation. The ontology is a 
graph data structure that stores the relationships among all VIS 
functions, all data streams, and all data-VIS bindings (and the 
resulting web pages). Because we modelled the ontology using a 
document data model [17], we implemented the ontology using 
three MongoDB database collections, which are: 

 OntoVis for defining and keeping the records of all VIS 
functions and their metadata; 

 OntoData for storing the records of all data streams and 
their metadata; 

 OntoPage for maintaining the binding points between VIS 
functions and data streams, their metadata and the URLs of 
the corresponding web pages. 

As shown in Figure 4, in addition to the aforementioned Search 
Service and Propagation Agent, there are: 

 A Downloader Agent for fetching data from 
dynamically-changing data automatically from the SCRC 
data infrastructure; 

 A set of Analytical Agents, each applies an analytical 
function or data mining algorithm to a predefined collection 
of data streams and generates derived data to be rendered, 
e.g., a similarity matrix of a collection of time series (see 
also Section 5); 

 An Indexing Agent that periodically scans the database 
operation logs and updates various textual descriptions in 
the ontology, which may be used in search or displayed by 
VIS functions; 

 
Figure 3: The RAMP VIS server (vis.scrc.uk) provides users with a user interface (with search facility, personal portal, etc.), a collection of dashboards (with 
clickable visual and data objects), and various plots for visualising the data hosted by the SCRC data infrastructure.  
 

 
Figure 4: The architecture of the RAMP VIS server, featuring its ontology, agents, and services, and their relationships with the UI, web pages (dashboards 
and plots), VIS functions (programs and test data), fetched and derived data streams, and SCRC data infrastructure.  
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 A Thumbnail Agent for creating and updating the 
thumbnails of dashboards and plots that may change due to 
the dynamic change of the underlying data. 

 A Bookmark Service for managing bookmarks in users’ 
portals; 

 An Authentication Service for approving a user’s login 
action; 

 An Authorization Service for distinguishing ordinary or 
administrative users. 

The RAMP VIS server was implemented with backend 
microservices using two state-of-the-art REST-API frameworks: 
JavaScript-based NodeJS and Python-based Flask. The I/O-
intensive operations (e.g., database or file-system access) are 
performed asynchronously and are implemented with a NodeJS 
microservice. The CPU intensive operations (e.g., running 
Analytics Agents) are implemented with a Flask microservice. 
The Flask framework also provides Analytics Agents with some 
off-the-shelf analytical libraries, e.g., NumPy, SciPy, scikit-learn. 
The SCRC data infrastructure provides the Downloader Agent 
with Python APIs to fetch H5 data. 

5. Analytical Support 

As exemplified by numerous visual analytics papers, VIS 
applications with a large data repository are expected to employ 
both data analysis algorithms and visualisation techniques. For 
example, analytical tasks have been critical for assessing model 
performance and uncertainty (e.g., comparing predictions to 
observations and comparing multiple model runs) [53], and for 
exploring epidemiological data (e.g., identifying areas, time 
periods, or demographic groups exhibiting similar trends in 
outbreak progression) [7]. With the huge number of time series to 
be hosted by SCRC data infrastructure, we anticipated that simply 
relying on observational visualisation might not be efficient or 
effective. We thus grouped several VIS volunteers with strong data 
mining experience into the analytical support team. 

After several attempts to acquire detailed requirements for 
analytical visualisation capacity, we learned a high-level 
requirement from some modelling scientists, i.e., “cross-model 
validation” would be needed at some stage. With their expertise and 
initiatives, the team members anticipated that comparing time 
series would be an unavoidable analytical need because of the sheer 
volume of dynamically expanding time-series data. The initial data 
available to the team contained hundreds of time series for different 
regions of Scotland, different indicators (e.g., test, case, 
hospitalised, and fatality), different genders and age groups, and so 

on. While waiting for modelling data to be prepared for 
comparative analysis, the team started to develop visual analytics 
techniques for summarising, simplifying, and comparing time series 
and for searching and visualising patterns and structures in the data. 
Building on the VIS literature on time series [3], we anticipated the 
following analytical tasks: (i) discovering recurring trends, (ii) 
looking for outliers, (iii) identifying clusters, and (iv) measuring 
similarities according to one or more characteristics (e.g., scale, 
gradient, time lag, etc.). The team’s anticipation was confirmed 
when more data and specific requirements arrived several months 
later. 

Guided primarily by these tasks, we experimented with a 
number of analytical visualisations in conjunction with an analytical 
toolbox that consists of different metrics and algorithms for 
quantifying the characteristics of individual time series, computing 
pairwise similarities, and transforming the time series to feature 
spaces that enable their similarities and clustering to be visualised. 

Analytical Toolbox. We started developing the analytical toolbox by 
creating a library of low-level analytical filters that treat time series 
as 1-D signals. Since time series may contain noise, various types of 
filters (e.g., flat, Hanning, Hamming, Bartlett, and Blackman 
windows) can be used to smooth time series when required. We 
then added a comprehensive library of analytical metrics for 
measuring the distance, difference, similarity, or error between 
two time series (e.g. mean square error and many of its variations, 
Pearson correlation coefficient, structural similarity index measure, 
mutual entropy, Spearman correlation coefficient, Kendall’s tau, 

peak signal-to-noise ratio, 𝐹-test, and so on). We further included 
algorithms such as dynamic time warping (DTW) and 
dimensionality reduction methods such as principal component 
analysis (PCA) and multi-dimensional scaling (MDS). 

Analytical Visualisations. We also experimented with a number of 

visual representations, focusing on comparing 𝑁 time series with 𝑇 

data points. If one needs to determine any group of 𝑘 segments of 
time series that may be similar, the number of possible groups to be 

observed would be at the level of 𝑂(𝑁𝑘𝑇𝑘), hence using analytical 
algorithms to narrow down the search space is highly beneficial 
[15]. However, relying on metrics alone is not sufficient since time 
series could be similar/dissimilar due to factors not encoded in the 
data (e.g., differences in terms of demography and intervention). 
In that respect visualisation provides ways for domain experts to 
incorporate their knowledge when analysing and comparing 
different time-series. Figure 5 shows one set of our experiments for 
analysing the time series associated with the 14 regional health 
boards in Scotland. 

 A time-lag visualisation compares two time series by 
registering them using a cross-correlation that computes the 

 
Figure 5: The analytical support team develops and experiments with different analytical algorithms and visual representations (top left) and selects some 
designs to be deployed on the VIS infrastructure by the generic support team (top right). The lower part of the figure shows examples of analytical 
visualisations for time series analysis, including time-lag plot, force-directed graph, scatter plot, and heatmap matrix.  
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displacement of one time series relative to the other. A 
viewer can foresee what the future may look like in one 
board if it follows the same trends as another board, but 
with a delay. 

 A heatmap matrix shows pairwise similarity scores among all 

𝑁 time series reported by different health boards. Row or 
column headers can be accompanied by time-series profiles 
for detailed observations. This is especially important when 
the similarity/difference measures are difficult for viewers 
to interpret. 

 A force-directed graph produces a layout where the𝑁 nodes 

represent 𝑁 time series, and the length of each edge 
encodes the similarity/difference (short/long) between a 
pair of nodes. This visual representation is particularly 
useful for users to discover clusters of similar time series 
and outliers. 

 A chord diagram, which is shown in Figure 3, places 𝑁 time 
series as segments/nodes along a circle, and uses the 
thickness or color of each chord to encode the 
similarity/difference measures. 

 A scatter plot compares 𝑁 time series in their feature space. 
Typically, two most important features (e.g., principal 
components computed using PCA) are selected as the axes 
of a 2-D space, and each time series is positioned as glyphs 
in the space according its feature coordinates. 

When the analytical support team examined these experiment 
results with the domain experts, one domain expert commented 
“These give us a lot to think about. It is not that we do not require 
these. We were just overwhelmed by what visualisation can do.” 

Infrastructural Support. As shown on the right of Figure 5, following 
the experiments, the analytical support team selects analytical 
algorithms and visual representations to be integrated into the VIS 
infrastructure maintained by the generic support team. Each analytical 
algorithm becomes an analytical agent, while each visual 
representation becomes a plot. Because many data streams in the 
infrastructure are updated dynamically, each analytical agent is 
scheduled to recompute various measures and generate derived data 
automatically. In this way, when an analytical plot is called, it 
always displays the analytical results based on the latest data. 

6. Modelling Support 

Mathematically, finding an optimal model to forecast the 
contagion patterns of COVID-19 in different conditions (e.g., 
geographical, social, seasonal variations, different human 
interventions, etc.) is an intractable problem. Nevertheless the 
effort to develop better models and improve existing ones is both 
necessary and desirable [62]. When VIS volunteers were first 
gathered together, we anticipated that supporting the model 
development in SCRC would be the most challenging undertaking, 
because VIS would have to support the search for better models in 
an NP space (i.e., the EXPSPACE class) [15].We therefore 
organised some 10 VIS volunteers into four modelling support teams 

(referred to as Teams 𝐌𝐴, 𝐌𝐵, 𝐌𝐶, and 𝐌𝐷 below), providing 
opportunities for each team to focus on supporting one or two 
SCRC modelling teams through close collaboration. 

6.1. Team 𝐌𝐴: Supporting 1-km2 Spatial Simulation 

Model Simulation.jl [43] simulates the spread of COVID- 19 
based on spatial proximity and its effect on the local population 
according to its demographic structure, over time. The inputs are 

population counts in 10-year age-bands in 1×1km2 to 10×10km2 
grid cells across Scotland. Given an initial set of “seed” locations on 
day 0, the model outputs the number of people in different COVID-
affected categories for each subsequent day by age group in the same 
grid cell. Figure 6 shows a set of simulation results. 

We met the domain experts as the first version of the model 
was being created. There was an urgent need to visually inspect the 
relative proportions of COVID-affected individuals in different 
categories over time and space.When discussing the high-resolution 
model outputs and strategies one might use to summarise them to 
validate model outputs and (later) to compare different modelling 
scenarios, the need to freely explore these prior to establishing 
fixed tabular summaries became apparent. As this need was so 
urgent, we quickly established two VIS requirements: to enable (i) 
studying the relative proportions of COVID-affected individuals in 
different categories over space and time, and (ii) exploring the 
results at different scales from Scotlandwide to 1-km2 
neighbourhoods. 

Our solution to these challenges was to use interactive 
“tilemaps” [87] (also known as “glyphmaps” [104] and “embedded 
plots” [41]) with (a) glyphs representing multiple aspects of the 
modelled output together and (b) on-the-fly interactive gridding of 
the output at a suitable resolution in response to zoom/pan user 
interaction. The technical challenge was to make interaction, with 
this very high-resolution data quick and responsive enough to 
facilitate, rather than impede, exploration. 

On the left of Figure 6, data at a coarse spatial resolution is 
superimposed on a map of Scotland. The glyphs in the top, left 
image show the aggregated temporal trend as the population moves 
through the COVID-affected categories, with significantly lower 

 
Figure 6: Model output showing proportion of population by COVID-
affected category for the whole of Scotland (left) and more detail in 
SE Scotland (right). Top: glyphs show change in proportion of COVID-
affected population (top-bottom) from day 0 (left) to day 60 (right). 
Bottom: proportion of COVIDaffected population (left to right) for 
different age groups (young-old; top-bottom).  
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proportions of affected populations in the lower populated areas of 
NW Scotland. The image below this is a snapshot on day 32, 
showing the different rates at which the virus is affecting the 
population. The right column is a more detailed view of SE 
Scotland, as a result of zooming/panning. The snapshot on day 32 
(bottom right) shows that the virus is affecting different age groups 
differently. This is largely due to differences in resident population 
structure. Domain experts with knowledge of population density 
can see that low-density areas seem to act as “firebreaks”. Although 
this is the inner working of the spatial spreading algorithm, its 
appearance in the visualisation started a debate among the domain 
experts, influencing the next stage of model development – to 
investigate the importance of population density on speed of disease 
spread. The interactive tilemaps with glyphs have provided a basis 
for the ongoing work for evaluating the relative importance of 
different factors in the modelling and comparison of different 
lockdown scenarios. 

6.2. Team 𝐌B : Supporting Simple Network 
Simulation 

The Simple Network Simulation (SNS) [28] is a disease state 
progression model that computes numbers of people in a series of 
states for specified age bands, for different geographic units, over 
time. The inputs are population counts in each of the age bands, 
spatial units, social contact data capturing interactions between age 
groups and a spatial interaction matrix that determines the extent 
of the likely flows of people, and thus transmission, between each 
pair of spatial units. The model calculates the number of people in 
different states of the disease for each age group for each spatial unit 
on a daily basis. These outputs vary according to a number of model 
parameter settings. 

When we connected with the SNS team, they were considering 
generating a lockdown spatial interaction matrix by grouping daily 
travel-to-work flows for those in different employment sectors 
according to the likely effects on their jobs of the “work from home” 
edict of April 2020. Their graphical approach used origin-
destination matrices of data recorded in the UK Census of 
Population. However, flow quantities, group differences, and any 
geographic variations or effects of scale were difficult to see (Figure 
7). The effects of this or other model inputs on models outputs 
were unknown. 

We collectively identified the opportunity to apply established 
VIS principles to ongoing efforts to visually explore two specific 

domain questions: (a) which types of workers should we include in 
the input network (and what difference does this make to outputs)? 
(b) what do model outputs look like (and how do they vary over 
time and by age-group)? 

These gave plenty of scope for using judicious visual design and 
interactive methods for filtering, highlighting and selection to 
develop elegant answers to challenging questions. Further questions 
that we hoped to address at a higher level were: (c) how do the 
answers vary with scale and geography? (d) is visualisation effective 
in answering these questions (in this context)? 

Our solutions were developed as data sketches [58] embedded 
in structured documents for discourse around data and design [107] 
and engaged in regular video conferences and online discussion in a 
series of tight redesign loops [63]. The discourse resulted in some 
preliminary answers to these questions. For instance, for questions 
(a, c), the nature of the input network has an effect on outputs, with 
distinct spatial variation and greater effect at smaller scales. We 
redesigned graphics, allowing us to identify the areas most affected 
by the employment sector selection (our naive modelling of 
lockdown), areas with high out-of-area epidemiological 
importance, and the sources of those who visit them (Figure 7). 
These views were informative but do not dictate the scale or nature 
of the network we should use. We began by looking at NHS boards, 
but increased resolution to local authorities and then the higher 
resolution ‘Middle Layer Super Output Areas’ (MSOA) for selected 
areas as our answers, our knowledge of the kinds and scales of effect 
and their likely geographies developed. The application of VIS 
principles was informative and effective, and included guidelines 
and designs known to, used by, and sometimes developed by, the 
team, for example: 

 GridMaps [29, 67] – to add spatial information to origin-
destination matrices and address the occlusion that occurs 
when flows are shown between variously sized geographic 
units using standard projections. 

 OD Maps [106] – to show the geographic variation of the 
effects of the different input networks. 

 Animated transitions [88] between alternative layouts – to 
relate spatial and semi-spatial geographic projections. 

 Interactive selection and filtering – to vary view parameters 
and support exploration. Asymmetric link curves [31, 108] 

 
Figure 7: Original origin destination (OD) matrices - travel to work between local authorities in Scotland (top) and those in employment sectors likely to 
be operating under lockdown (bottom). Asymmetric flow map - all travel to work between local authorities shown in the spatial context, with line widths 
representing number of daily flows. Flow grid map - all travel to work, shows major flows and has the space to show internal flows. OD grid map - shows 
differences between travel to work flows in the ‘All’ and ‘Likely Operating’ employment sectors. Mini maps show incoming (and internal) flows for each 
local authority. Blues are negative (lower proportions of workers), reds are positive (higher proportions of commuting). Darker colours show larger 
differences. Differences are predominantly local at this scale with strong spatial patterns revealed.  
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to clearly show bi-directionality and asymmetry in the 
spatial interactions. 

For (b) and (c), initial model outputs were not particularly 
varied by space, time or attribute, but we do have plausible 
candidate methods that will allow such variation to be detected and 
assessed when the SNS models are finalized. Importantly, the 
visualization work resulted in better knowledge of the input 
network and its lockdown characteristics, and an emphasis on 
smaller scale “data zones”. The collaboration therefore enables us to 
be more confident about injecting visualisation into the modelling 
process (d), to shine light on the models as they are developed, 
tested, and parameterised, in ways that had not been considered by 
the modellers (Figure 1), and perhaps at fine scale. 

6.3. Team 𝐌C : Supporting Contact Tracing 
Modelling 

By the time VIS volunteers joined the SCRC, the contact tracing 
model [69] was already in development. The model simulates the 
spread of COVID-19 through a dynamic network that encodes the 
potential contacts among millions of individuals. These simulations 
result in some very large temporal networks [44]. 

We immediately established bi-weekly meetings with the 
modelling scientists. It quickly became clear that the domain 
experts did not have access to bespoke network visualisation tools, 
and were primarily relying on standard plots to view simulation 
results as disease progression curves and some summary metrics 

such as 𝑅. They were also comparing different intervention policies 
through such plots. We noticed that the temporal networks, which 
were used to derive the summary information, were never 
visualised. Hence, the first urgent requirement for VIS was to 
enable domain experts to observe such networks in order to gain an 
intuitive understanding about the temporal and topological 
behaviours of the model. The visualisation would also assist domain 
experts in communicating modelling results and informing policy 
making. 

We addressed the requirement by using existing network 
visualisation tools to minimise the delay due to software 

development. This allowed us to build familiarity with the model 
and the data, while providing example visualisations to stimulate 
our discussions with the domain experts. We then progressed to 
more advanced VIS techniques, e.g., employing scalable graph-
drawing techniques [85, 86], geographic-inspired metaphors [32], 
and graph-theoretic analysis for derived metrics to complement 
network visualisation (Figure 8). 

With bi-weekly collaboration meetings providing continuous 
feedback and ideas, we improved our prototypes iteratively through 
a web-based “project diary” and an open software repository [100]. 
As the collaboration matured over the period, we observed a trend 
that both domain experts and VIS volunteers actively contributed 
to the discussions on model building and visual design together. It 
became difficult to label whether a discussion was about 
visualisation or the model itself, and there were more discussions 
on generating insight than on producing software. 

6.4. Team 𝐌D : Supporting Inference and Model 
Assessment 

One group of SCRC modelling scientists have been focused on 
quantifying epidemic characteristics, effect of intervention, model 
performance, result uncertainty, and parameter sensitivity [90]. 
From the onset, the VIS volunteers for supporting these modelling 
activities anticipated the use of ensemble and uncertainty 
visualisation. Uncertainty is a common property of epidemiological 
models. The basic uncertainty visualization typically depicts the 
main computational results (e.g., an aggregated time series) in 
conjunction with other visual information for conveying the 
uncertainty (e.g., some amorphous pattern behind the main time 
series, or additional time series representing the 25 and 75 
percentiles of the ensemble). Such visual representation are 
commonly used in modelling. While the generic support team was 
developing these basic plots (e.g., top-right image in Figure 3), this 
team focuses on sensitivity analysis that helps modelling scientists 
to discover the reasons behind uncertainty. 

During an initial collaboration meeting, domain experts 
confirmed the need for visualising the sensitivity of model 
parameters. At that time, the domain experts were working on 

 

Figure 8: Some of the largest infection chains visualised – with asymptomatic transmissions highlighted (left), and with index nodes and locations of 
infections expressed along with a visual indication of the sizes of the chains (right). The visual analysis was also enriched with extracted graph-theoretic 
metrics (left-bottom).  
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their models in parallel, thus VIS volunteers were not able to obtain 
multi-run simulation data in the early months of the collaboration. 

VIS Team 𝐌𝐷 took initiatives to study two COVID-19 models in 
the public domain, attempting to generate multi-run simulation 
data. Before this attempt could yield useful output, one SCRC 
model, ABC-smc [76] produced multi-run simulation data for 
uncertainty visualisation and parameter space analysis. By attending 
modelling scientists’ meetings, the team were able to observe the 
interactions between the perspectives of modelling and uncertainty 
quantification, and established a set of requirements. 

Similar to most multi-run simulation problems, VIS needed to 
support the analysis of many sets of model parameters and outputs. 
In this case, each dataset consists of some 200 time series and their 
corresponding parameter sets. One obvious requirement is to 
visualise the uncertainty featured in the set of time series. As this is 
a common requirement for all models with time series outputs, we 
passed the requirement to the generic support team (see Figure 3). 
The team focused on the more complex tasks, i.e., (i) to identify 
input/output relationships, (ii) to determine key curve features 
such as maximum or largest slope, and (iii) to compare outputs 
from a number of different model runs. Immediately after the 
requirements analysis, we started to develop a VIS system 
iteratively, with increasing facilities for analytics, visualisation, and 
interaction. 

Figure 9 shows the current prototype after several iterations. 
We used the design approach of coordinated multiple views [10], 
the visual analytics approach for computing a set of curve features 
[92], a parallel coordinate plot [47] for viewing and filtering multi-
dimensional parameter sets and curve features, and aggregated 
curves summarising the outputs of the selected parameter sets. We 
are in the process of introducing new facilities, such as slicing the 
multidimensional parameter space [98], using functional box plots 
[102, 68] to summarize many curves, and the contribution-to-the 
sample-mean plot [8] to show the sensitivity of outputs to input 
parameters. 

7. Disseminative Visualisation 

While most VIS volunteers were distributed among the 
aforementioned six teams, we also created a small team for 
disseminative visualisation since public information dissemination was 
the original overall requirement. One epidemiology researcher 
with interest in data visualisation also joined the team. The team 
explored the prevailing approaches, in the UK and internationally, 
in public-facing visualisations related to the pandemic. This ranged 
from those produced by a number of governments (e.g., the four 
home nations in the UK), organisations (e.g., WHO, UK ONS), 

universities (e.g., Johns Hopkins dashboards), media outlets (e.g., 
FT Coronavirus tracker), and non-commercial web services (e.g., 
Worldometers). 

The team concluded that we should complement, but not 
duplicate, the existing effort, and defined our goal as to inform the 
public about activities of SCRC through storytelling visualisation. 
We identified the following requirements: (i) to maintain scientific 
rigour, (ii) to retain scientific language, and (iii) to abstract 
visualisation output. For example, one of our initial designs used 
football result prediction and weather forecasting metaphors. Our 
rigorous consideration indicated that the former might be 
associated with gambling, whereas the latter could be perceived as 
inaccurate, and they could have negative connotations to how 
epidemiological modelling would be perceived. 

Figure 10 illustrates our process for creating storytelling 
visualisation. It started with an ideation phase where we elaborated 
preliminary concepts and ideas. This was done using a combination 
of the five-design sheets [81] methodology (Figure 10(a)), animated 
PowerPoint mock-ups, and web-based prototyping. These sparked 
off other explanatory forms, e.g., infographics and slide packs, such 
as in Figure 10(b), which were used to describe each 
epidemiological model and the corresponding visualisations. As it 
would be difficult to apply a unified narrative to every model, we 
opted for allowing each story to be developed independently. 

Current storytelling visualisations have been implemented as: 
(a) web-based presentations using the Reveal.js framework, with 
SVG-based animations and the potential for directly feeding into 
them visualisations created by other teams, (b) as video outputs of 
animated presentations, and (c) as infographics, created using 
graphics editors and creative design tools. We are in the process of 
creating a public web server for hosting these storytelling 
visualisations. 

8. Reflections and Recommendations 

In this section, we reflect on our experience of developing VIS 
capacities for emergency response, and translate our reflections to 
a set of recommendations as a step towards a new methodology. 

Reflection on general perception of VIS as a dissemination tool. Expert 
users often see visualisation as “for informing others” rather than 
“for helping myself”. This can be a big stumbling block during 
requirement analysis. As illustrated in Figure 1, Dr. Reeve’s 
response during the first meeting helped overcome this stumbling 
block, shortening the delay in requirements analysis by months. 
Meanwhile, to the disseminative visualisation team, creating such 

 
Figure 9: A prototype system for analysing and visualising ensemble data. The parallel coordinate plot (right) allows one to filter input parameters, select 
a subset of time series to be aggregated, and display the aggregated curves (left). 
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visualisation has not been an easy journey, especially without the 
advice from an expert on public engagement. 

Reflection on requirements analysis. During the pandemic, domain 
experts were extremely busy. Different teams did not follow the 

same formula for requirement analysis. Modelling support teams 𝐌𝐵 

and 𝐌𝐶 followed the recommended method for user-centred 
requirement analysis, and benefited from frequent engagement. 

The generic support team and team 𝐌𝐴 identified urgent requirements 
quickly and began their development without much delay. The 

analytical support team, team𝐌𝐷, and disseminative visualisation team 
had to use their knowledge to anticipate and analyse the potential 
requirements. In emergency responses, all of these are valid 
methods. Several teams had positive experience in using quickly-
produced visualisations to stimulate requirement analysis. Team 

𝐌𝐵 made good use of several communication mechanisms, 
including searchable threaded chat streams, structured feedback, 
and design exposition. A few VIS volunteers also found it rewarding 
to attend domain experts’ meetings that at first appeared irrelevant. 

Reflection on team organisation. The categorisation of visualisation 
tasks based on the complexity of the search space of the possible 
solutions is relatively new [15]. It informs us that model 
optimisation is an NP process in general, and it requires all three 
levels of visualisation, i.e., observational, analytical, and model-
developmental visualisation, which correspond to solution spaces of 

complexity 𝑂(𝑛), 𝑂(𝑛𝑘), and EXPSPACE (an NP class). The 
complexity is likely to impinge on the effort for identifying VIS 
requirements. Hence, having a VIS team working with each 
modelling team was necessary for establishing such understanding. 
All teams quickly identified and addressed the observational 
requirements related to individual models, and some have started 
to address the requirements for model analysis and model 
optimisation. Meanwhile, the generic support team progressed to the 
development stage quickly because of not only the necessity but also 
the less complex search space. 

Reflection on VIS resources. Using volunteer effort is not an ideal 
solution for emergency responses. It would be more efficient if we 
could utilise an existing technical and knowledge infrastructure for 
such an emergency response, if such an infrastructure had existed 
for other operations and had an advanced VIS server and a team of 
VIS developers who were knowledgeable about different levels of 
visualisation tasks. Our volunteering effort was a make-shift 
solution, which benefited strongly from the academic knowledge 
infrastructure in the UK. Its progress could be more rapid if there 
were more development resources. The organisation of VIS 

volunteers partly reflects the need to concentrate most 
development resources in the generic support team. Nevertheless, the 
outcomes delivered by the VIS volunteers between June and 
December 2020 without any funding are unprecedented. This 
demonstrates the importance of VIS as well as volunteering effort 
in emergency responses. 

Reflection on VIS in epidemiological modelling. From the perspective of 
epidemiological modelling, the RAMPVIS effort allowed us to 
appreciate how VIS may be used in many aspects of modelling 
workflows, in addition to disseminating modelling results. 
Developing epidemiological models during an epidemic or 
pandemic is a not a new phenomenon. To have epidemiology teams 
develop multiple models is not uncommon, but activities by SCRC 
and RAMPVIS have demonstrated that the scale, complexity and 
dynamic nature of the many datasets required to support COVID-
19 modelling benefits enormously from infrastructural support 
featuring data management, analysis, and visualization capabilities. 
Success in an emergency response, such as combating COVID-19, 
rarely hinges on a single correct model or a critical visual design. 
More likely, it will benefit from the collective effort of continuously 
developing, evaluating, and improving models, and from the 
capabilities for enabling rapid observation of numerous pieces of 
data and analytical results throughout the modelling workflows. 
The RAMPVIS effort showed that collective VIS support is 
necessary and feasible, and such capabilities should be available to 
epidemiological modellers from the very beginning in future 
emergency responses. 

Recommendation. Our approaches, experience, and reflections may 
be translated to the following recommendations for future VIS 
applications in emergency responses: 

 In December 2014, US President Barack Obama spoke to 
the National Institutes of Health (USA): “There may and 
likely will come a time in which we have both an airborne 
disease that is deadly. And in order for us to deal with that 
effectively, we have to put in place an infrastructure” [96]. 
Shadbolt et al. outlined the future need for a data ecosystem 
[84]. VIS should be part of any data ecosystem, and be 
closely coupled with or integrated into data infrastructures. 
The “readiness” of VIS technical and knowledge 
infrastructures will make a difference. While it may not be 
feasible to build an infrastructure for every type of potential 
emergency, we can benefit significantly to have a few VIS 
infrastructures that are ready to be cloned, re-purposed, 
and adapted for different emergency responses. 

 
Figure 10: Storytelling visualisation creation process. (a) Initial concepts and ideas were explored using a combination of the fivedesign sheets [81] 
method. (b) Following the progress of the modelling activities, these were transformed to animated presentations and infographics, which incorporated 
visualisations from other teams (in this example, from Team 𝐌𝐴). High-resolution images of the design sheets and the presentations are available as the 
supplementary materials.  
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 We need to make a serious effort to redress the common 
misconception that visualisation is only a dissemination 
tool. In particular, we need to help modelling scientists to 
become accustomed to use VIS techniques throughout their 
workflows. Perhaps the best way to broaden the uses of VIS 
in modelling workflows is to enable more collaborative 
research between VIS scientists and modelling scientists in 
different disciplines. 

 While the agile principle [71] fits well with VIS 
development for supporting emergency responses, one 
should be open-minded about different approaches. The 
diverse approaches taken by different VIS teams in the 
RAMP VIS effort indicated that standard practice might not 
always be applicable. VIS development in emergency 
responses can benefit tremendously from the existing VIS 
knowledge, in the form of theories, methodologies, 
literature, and personal experience. The VIS community 
should improve its “readiness” by advancing abstract VIS 
knowledge in the form of theories and methodologies. 

9. Conclusions 

In this paper, we have reported the work carried out by a group of 
VIS volunteers to support modelling scientists and epidemiologists 
in combating COVID-19. Our approaches to the challenges that we 
have encountered are rare and valuable contributions to the first 
step towards a methodology for developing and providing VIS 
capacity to support emergency response. In November 2020, the 
UK Research and Innovation awarded funding to the group, 
transforming the volunteering effort to a more structured VIS 
operation in 2021. This allows us to develop a VIS infrastructure 
that can be deployed to support some ongoing modelling effort as 
well as be served as a major example to influence VIS infrastructure. 
Meanwhile, we continue to strengthen the collaboration between 
VIS researchers and epidemiological experts, developing more 
domain-specific VIS techniques for supporting epidemiological 
modelling workflows. 
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